

Introduction

Project funded by

- Original data Dec 2012
- Key variables updated Nov 2014

Agenda

- 1. Motivation
- 2. Model Approach
- 3. Results
- 4. Impacts
- 5. Risk Analysis
- 6. Competitive Actions

1 Motivation

Why are international Investors afraid of Alberta?

Capital Investment In Canada

Perceptions of Alberta Not Capital Cost Effective

- Oil Sands over runs 61% to 107%
 - Theory predicts oil sands over runs!
- Not true for all Alberta Projects
 - Dow Chemical LHC-1 Project 15% under

2 Model Approach

Is the perception valid?

Approach

- Life cycle cost of petrochemical plant (methanol)
- Apples to apples comparison
- Locations: AIH, USGC, RMWB
- Verifiable & objective
- Economic model for investors

Why Methanol?

- Globally traded
- Many uses:
 - Fuel/biofuel/diluent
 - Feedstock
 - Plastics/fibres
- World-class sized plant
- Proven technology
- Reference plants

Plant Description

Methanol Plant

- 3-year build
- Capacity 300 MMg/year
- Natural gas feedstock
- "Clean and level site"

 $2CH_4 + 3H_2O => 2CH_3OH + 2H_2 + H_2O$

Assumptions

- 1. Revenue: Tide-water world market prices
 - 1. US\$1.42/gal
 - 2. Supply has no impact on price
 - 3. Unit train rail distribution to Vancouver
- 4. Economic model ~100 variables
 - 1. "Real" model
 - 2. \$0.88 Cdn/USA
 - 3.WACC 8.9%
 - 4. D/E 1.63
 - 5. Terminal values profit in perpetuity
- 3. Class V Capital Cost
- 4. Market price natural gas feedstock
- 5. Standard Government tax treatment

Capital Cost Estimate

Inside Battery Limits (ISBL)	USGC Standard Factor	USGC US\$ MM	AIH US\$ MM	RMWB US\$ MM	Notes	
Owner's Costs	7%	\$29	\$29	\$29	Independent of location (same owner)	
Equipment	20%	\$81	\$82	\$83	Equipment purchased globally	
Materials	19%	\$77	\$78	\$79	Materials and bulks sourced globally	
Engineering	16%	\$67	\$67	\$67	Globally sourced for ISBL (local for OSBL)	
Construction	37%	\$176	\$254	\$400	Construction is local & stick-built	
ISBL Total		\$430	\$509	\$657		
Total		\$819	\$937	\$1,156	OSBL+ISBL+ Working Capital + Other Soft	
%USGC		100%	115%	142%	Consulting.	

Overheated Market Consideration

Hot market

- Rates go up and
- Productivity goes down

"Market heat scale"=

<u>Unemployment</u>

Job Vacancies

Market Heat Productivity Impact

7 = Cold Market, 20% bonus

3 = Neutral (Compass Intl Standard)

1= Hot Market, 25% penalty

3 Results

So does Alberta stack up?

Cumulative NPV

Operating Income

NPV Life-cycle Comparison

Differences

NPV Differential <u>Gulf Coast minus</u> Alberta Industrial Heart Land

Sensitivity

GC - AIH Net Present Value

4 Impacts

What are the key differences?

- 1. Tax
- 2. Distribution
- 3. Natural Gas Price
- 4. Construction
- 5. Sensitivities

1 Tax Rates

Alberta 25%

- Stable, surplus governments
- \$ 18-50MM annually
- \$222MM NPV impact

Louisiana 43%

- Ability to negotiate
- Massive deficit governments

2 Distribution Costs

AIH

- Unit train to tide water
- \$24MM annually
- \$150MM NPV Impact

USCG

Free!

3 Natural Gas Price

4 Construction Costs

AIH Penalty

Productivity 26%

Winter 35% for $1/3^{rd}$ of build = 12%

Hot Market 24% absolute = 9%

Remote Factor = 0%

Exchange rate = (6%)

= 45% construction cost penalty

15% Capital cost penalty

\$126 MM

\$95MM NPV

5 Sensitivities

- 1. WACC higher favours USGC
- 2. Gas price volatility favours AIH
- 3. Falling C\$ favours AIH
- 4. Interest rates higher favours USGC
- 5. Market heat favours AIH

Market Heat	USGC	AIH	
2012	2.4	0.6	
2014	1.8	1.1	

5 Risk Analysis

What about other factors?

Risk = probability * impact

RBS

- Political
- Economic
- Social
- Technical
- Legal & Regulatory
- Environmental

Qualitative screen favours AIH

	Risk Description	USGC	AIH
P1	Political Instability		
P2	Profit Repatriation		
Ec4	Availability of other Process Inputs		
Ec6	Currency Fluctuation		
T1	Site Availability		
S 1	Social License		
L2	Legal		
Ev2	Environmental Sensitivity		
Ev1	Serve weather		
Ec5	Access to Market		
L1	Regulatory efficiency and effectiveness		
Ec3	Workforce Availability		
Ec2	Feedstock		
Ec1	Capital Cost and Schedule Variance		

6 Competitive Actions

So what do we do?

Competitive Actions

- Local consumption
 - Fuel
 - Diluent
 - Chemical production
- Winter construction
 - Modularization
- Tailored planning
 - Understanding & adapting to local conditions
 - Focus on profit
 - Political support

Summary

AIH

- ✓ Lower taxes
- ✓ Feedstock price
- ✓ Feedstock availability
- ✓ Declining Cdn\$
- Winter construction
- Market Access

USGC

- ✓ Lower Capital Cost
- ✓ Tidewater
- Extreme weather
- Environmental sensitivity
- Social License
- Feedstock competition

Questions?

